RECEIVED CENTRAL FAX CENTER

SEP 2 7 2006

Amendments to the Claims:

Please cancel Claim 14.

The Claim Listing below will replace all prior versions of the claims in the application:

Claim Listing:

- (Previously Presented) A process comprising the step of reacting a macrocyclic compound characterized by at least two nucleophilic moieties with a bifunctional bridging component characterized by its ability to form π-allyl metal complex in the presence of catalyst thereby achieving a bridged macrocyclic product.
- 2. (Original) The process of claim 1, wherein the macrocyclic compound is a macrolide antibiotic.
- 3. (Original) The process of claim 1, wherein the macrocyclic compound is an erythromycin derivative.
- 4. (Original) The process of claim 3, wherein the erythromycin derivative is azithromycin, desmethyl azithromycin, roxithromycin, clarithromycin, telithromycin, or cethromycin.
- 5. (Original) The process of claim 1, wherein the macrocyclic compound is selected from:

Page 3 of 14

wherein

D is selected from $-NHCH_2$ -, $-NHCHR_1$ -, $-NHCR_3R_4$ -, $-NR_1CH_2$ -, -NHC(O)-, $-NR_1C(O)$ -, -NHC(S)-, or $-NR_1C(S)$ -;

Each R₁ is independently selected from hydrogen, deuterium, a substituted or unsubstituted, saturated or unsubstituted aliphatic group, a substituted or unsubstituted, saturated or unsaturated alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, saturated or unsaturated heterocyclic group;

R₃ and R₄ is independently selected from the group consisting of hydrogen, acyl, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsubstituted group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, saturated or unsubstituted heteroaromatic group, saturated or unsaturated heterocyclic group; or can be taken together with the nitrogen atom to which they are attached to form a substituted or unsubstituted heterocyclic or heteroaromatic ring;

L is selected from hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsaturated

alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heteroaromatic group, or a substituted or unsubstituted heterocyclic group; one of U or V is hydrogen and the other is independently selected from the group

$$\begin{cases} -O_{i_1} & G \\ & R_1 & \text{or oth} \end{cases}$$

consisting of: R_1 , OR_1 , $OC(O)R_1$, $OC(O)NR_3R_4$, $S(O)_nR_1$, carbohydrate or sugar moiety;

or U and V, taken together with the carbon atom to which they are attached, are C=O;

or UV and R_oR_f , taken together with the carbon atoms to which they are attached, are $-C(R_1)=CH$ -;

one of J or G is hydrogen and the other is selected from: R₁, OR₁, or NR₃R₄; or J and G, taken together with the carbon atom to which they are attached, are selected from: C=O, C=NR₁, C=NOR₁, C=NO(CH₂)_mR₁, C=NNHR₁, C=NNHCOR₁, C=NNHCOR₃, C=NNHCONR₃R₄, C=NNHS(O)_nR₁, or C=N-N=CHR₁;

 R_a , R_b , R_c , and R_d are independently selected from $-R_1$, $-OR_1$, $-S(O)_nR_1$, $-C(O)OR_1$, $-OC(O)OR_1$, $-OC(O)OR_1$, $-C(O)NH-R_1$, $-NHC(O)-R_1$, $-N(R_3)(R_4)$, $-NHC(O)-OR_1$, $-NHC(O)NH-R_1$, or $-OC(O)NH-R_1$;

or R_a and R_b, R_a and R_c, R_a and R_d, R_b and R_c, R_b and R_d, or R_c and R_d, taken together with the carbon atom or atoms to which they are attached, are selected from substituted or unsubstituted alicyclic or substituted or unsubstituted heterocyclic;

one of R_e and R_f is selected from hydrogen or methyl, and the other is independently selected from halogen, deuterium, or R_1 ;

R_h is hydroxy;

R_g is selected from hydrogen, a substituted or unsubstituted, saturated or unsaturated aliphatic group, a substituted or unsubstituted, saturated or unsaturated alicyclic group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocyclic group;

or R_g and R_h , taken together with the carbon atom to which they are attached, are selected from an epoxide, a carbonyl, a substituted or unsubstituted olefin, a substituted or unsubstituted alicyclic, a substituted or unsubstituted heterocyclic;

W is NR₃R₄;

one of X and Y is hydrogen, substituted or unsubstituted aliphatic, and the other is independently selected from: hydroxy, -SH, -NH₂, or -NR₁H;

or X and Y, taken together with the carbon atom to which they are attached, are selected from: C=O, C=NR₁, C=NOR₁, C=NO(CH₂)_mR₁, C=NNHR₁, C=NNHCOR₁, C=NNHCONR₃R₄, C=NNHS(O)_mR₁, or C=N-N=CHR₁:

R_p is selected from hydrogen, acyl, silane, or a hydroxy protecting group; X_H is selected from hydrogen or halogen; m is an integer; and n is 0, 1, or 2.

- 6. (Previously Presented) The process of claim 5, wherein, for the macrocylic compound, L is ethyl.
- (Previously Presented) The process of claim 5, wherein, for the macrocylic compound, one of X and Y is hydrogen and the other is selected from hydroxy or amino.
- (Previously Presented) The process of claim 5, wherein, for the macrocylic compound, X and Y, taken together with the carbon atom to which they are attached, are selected from the group consisting of: C=O, C=NH, C=N-OH, or C=N-NH₂.
- (Previously Presented) The process of claim 5, wherein, for the macrocylic compound, Rg is methyl.
- 10. (Previously Presented) The process of claim 5, wherein, for the macrocylic compound, Re is hydrogen and Rf is selected from methyl, allyl, or propargyl.

- 11. (Previously Presented) The process of claim 5, wherein, for the macrocyclic compound, one of U and V is hydrogen and the other is selected from -OH or -O-cladinose.
- 12. (Previously Presented) The process of claim 5, wherein, for the macrocylic compound, U and V, taken together with the carbon atom to which they are attached, are C=O.
- 13. (Cancelled)
- 14. (Cancelled)
- 15. (Previously Presented) A process comprising the step of reacting a macrocyclic compound characterized by at least two nucleophilic moieties with a bifunctional bridging component characterized by at least two leaving groups in the presence of catalyst thereby achieving a bridged macrocyclic product.